找回密码
 立即注册
查看: 19329|回复: 48

熔接机基本维护

[复制链接]
HT-BEYOND 发表于 2006-6-16 12:29:55 | 显示全部楼层 |阅读模式
熔接机基本维护<br>
关键词: 光纤,熔接机,维护 <br>
<br>
熔接机基本维护<br>
<br>
1.更换保险丝<br>
由厂家提供有备用保险丝,可供直接更换。<br>
<br>
2.更换电极<br>
首先取下电极室的保护盖,松开固定上电极的螺丝,取出上电极。然后松开固定下电极的顶丝,取出下电极。新电极的安装顺序与拆卸动作相反,要求两电极尖间隙为:2.6±0.2mm,并与光纤对称。通常情况下电极是不须调整的。在更换的过程中不可触摸电极尖端,以防损坏,并应避免电极掉在机器内部。更换电极后须进行电弧位置的校准,其过程如下:<br>
1〉将熔接机电源开关置“开”位置,开启熔接机。<br>
2〉按压“参数”进入一级菜单状态。<br>
3〉按压“▲”或“▼”键使光标箭头“→”指向“维护方式”项。<br>
4〉按压“确认”键,进入维护菜单。<br>
5〉按压“▲”或“▼”键使光标箭头“→”指向“清洁电极”项。<br>
6〉按压“确认”键,则机器自动进行电弧放电,以大电流电弧产生的高温将沉积在电极表面的杂质汽化,达到稳定放电电流、清洁电极及对新电极进行老化的效果。<br>
7〉按压“▲”或“▼”键使光标箭头“→”指向“电弧位置”项。<br>
8〉参见前述,安装左光纤端面,使光纤端面与上下两电极尖构成三点一线。<br>
9〉按压“确认”键,则机器自动进行电弧放电,此时用户可以打开熔接机右光纤压板,观察光纤与电弧的相对位置。通过调整电极间隙来实现光纤位于电弧中部的目标。<br>
10〉按压“参数”键,依次退出菜单状态。<br>
☆注意:1&gt;更换电极前必须先关掉熔接机的电源。<br>
2&gt;进行电弧位置校准之前必须确认所选择的放电程序中放电参数已被有效地设置。<br>
3.电极的护理<br>
长时间使用,电极的尖端会产生沉积物,使放电不畅,这时会出现“嘶嘶”声,这时需要对电极进行清洁。建议定期进行熔接机的电极护理即清洁电极,具体操作如下:<br>
1〉将熔接机电源开关置“开”位置,开启熔接机。<br>
2〉用酒精棉球轻轻擦拭电极尖部。<br>
3〉按压“参数”进入一级菜单状态。<br>
4〉按压“▲”或“▼”键使光标箭头“→”指向“维护方式”项。<br>
5〉按压“确认”键,进入维护菜单。<br>
6〉按压“▲”或“▼”键使光标箭头“→”指向“清洁电极”项。<br>
7〉按压“确认”键,则机器自动进行电弧放电,以大电流电弧产生的高温将沉积在电极表面的杂质汽化,达到稳定放电电流、清洁电极的效果,一般为两到三次即可,直到电极尖上的电弧稳定且“嘶嘶”声消失。<br>
8〉按压“参数”键,依次退出菜单状态。<br>
☆注意:1〉电极尖部非常脆弱,在所有的护理过程中应切勿用硬物碰及,以免损伤电极,而引起放电电弧不稳定,造成接续质量没有一致性。<br>
2〉护理电极时,不可长时间进行大电流放电,以免仪表长时间超负荷而损坏仪表。<br>
<br>
4.清洁V型槽<br>
熔接机调芯方向的上下驱动范围各只有数十微米,稍有异物就会使光纤图像偏离正常位置,造成不能正常对准。这时候需及时清洁V型槽,具体过程如下:<br>
1&gt;掀起熔接机的防风罩。<br>
2&gt;打开光纤压头和夹持器压板。<br>
3&gt;用棉签棒沾无水酒精(或将牙签削尖)单方向擦拭V型槽,即可。<br>
☆注意:切忌用硬质物清洁V型槽或在V型槽上用力,避免坏V型槽或使V型槽失准,造成仪表不能正常使用。<br>
<br>
5.清洁显微镜头<br>
由于KL系列自动熔接机采用图象处理方式进行工作,故保持显微镜头的整洁是十分必要的。具体过程如下:<br>
1&gt;掀起熔接机的防风罩,可以发现水平及垂直两镜头。<br>
2&gt;检查两镜头上有无异物,若有则用适当工具处理,不可用硬物触<br>
及镜头,以免损伤镜头。<br>
(1)用“皮老虎”气囊吹去镜头上脏物。<br>
(2)用棉签棒沾少量无水酒精轻擦镜头。<br>
(3)用干的棉签棒轻轻擦拭,确认镜头干净即可。<br>
 楼主| HT-BEYOND 发表于 2006-6-16 12:30:41 | 显示全部楼层

re:光纤熔接技术...

光纤熔接技术<br><br>
光纤传输具有传输频带宽、通信容量大、损耗低、不受电磁干扰、光缆直径小、重量轻、原材料来源丰富等优点,因而正成为新的传输媒介。光在光纤中传输时会产生损耗,这种损耗主要是由光纤自身的传输损耗和光纤接头处的熔接损耗组成。光缆一经定购,其光纤自身的传输损耗也基本确定,而光纤接头处的熔接损耗则与光纤的本身及现场施工有关。努力降低光纤接头处的熔接损耗,则可增大光纤中继放大传输距离和提高光纤链路的衰减裕量。<br>
  一、影响光纤熔接损耗的主要因素<br>
  影响光纤熔接损耗的因素较多,大体可分为光纤本征因素和非本征因素两类。<br>
  1.光纤本征因素是指光纤自身因素,主要有四点。 <br>
  (1)光纤模场直径不一致;<br>
  (2)两根光纤芯径失配;<br>
  (3)纤芯截面不圆;<br>
  (4)纤芯与包层同心度不佳。<br>
  其中光纤模场直径不一致影响最大,按CCITT(国际电报电话咨询委员会)建议,单模光纤的容限标准如下:<br>
  模场直径:(9~10μm)±10%,即容限约±1μm;<br>
  包层直径:125±3μm;<br>
  模场同心度误差≤6%,包层不圆度≤2%。<br>
  2.影响光纤接续损耗的非本征因素即接续技术。 <br>
  (1)轴心错位:单模光纤纤芯很细,两根对接光纤轴心错位会影响接续损耗。当错位1.2μm时,接续损耗达0.5dB。<br>
  (2)轴心倾斜:当光纤断面倾斜1°时,约产生0.6dB的接续损耗,如果要求接续损耗≤0.1dB,则单模光纤的倾角应为≤0.3°。<br>
  (3)端面分离:活动连接器的连接不好,很容易产生端面分离,造成连接损耗较大。当熔接机放电电压较低时,也容易产生端面分离,此情况一般在有拉力测试功能的熔接机中可以发现。<br>
  (4)端面质量:光纤端面的平整度差时也会产生损耗,甚至气泡。<br>
  (5)接续点附近光纤物理变形:光缆在架设过程中的拉伸变形,接续盒中夹固光缆压力太大等,都会对接续损耗有影响,甚至熔接几次都不能改善。<br>
  3.其他因素的影响。<br>
  接续人员操作水平、操作步骤、盘纤工艺水平、熔接机中电极清洁程度、熔接参数设置、工作环境清洁程度等均会影响到熔接损耗的值。 <br>
  二、降低光纤熔接损耗的措施<br>
  1.一条线路上尽量采用同一批次的优质名牌裸纤<br>
  对于同一批次的光纤,其模场直径基本相同,光纤在某点断开后,两端间的模场直径可视为一致,因而在此断开点熔接可使模场直径对光纤熔接损耗的影响降到最低程度。所以要求光缆生产厂家用同一批次的裸纤,按要求的光缆长度连续生产,在每盘上顺序编号并分清A、B端,不得跳号。敷设光缆时须按编号沿确定的路由顺序布放,并保证前盘光缆的B端要和后一盘光缆的A端相连,从而保证接续时能在断开点熔接,并使熔接损耗值达到最小。<br>
  2.光缆架设按要求进行<br>
  在光缆敷设施工中,严禁光缆打小圈及折、扭曲,3km的光缆必须80人以上施工,4km必须100人以上施工,并配备6~8部对讲机;另外“前走后跟,光缆上肩”的放缆方法,能够有效地防止打背扣的发生。牵引力不超过光缆允许的80%,瞬间最大牵引力不超过100%,牵引力应加在光缆的加强件上。敷放光缆应严格按光缆施工要求,从而最低限度地降低光缆施工中光纤受损伤的几率,避免光纤芯受损伤导致的熔接损耗增大。<br>
   3.挑选经验丰富训练有素的光纤接续人员进行接续<br>
  现在熔接大多是熔接机自动熔接,但接续人员的水平直接影响接续损耗的大小。接续人员应严格按照光纤熔接工艺流程图进行接续,并且熔接过程中应一边熔接一边用OTDR测试熔接点的接续损耗。不符合要求的应重新熔接,对熔接损耗值较大的点,反复熔接次数以3~4次为宜,多根光纤熔接损耗都较大时,可剪除一段光缆重新开缆熔接。 <br>
  4.接续光缆应在整洁的环境中进行<br>
  严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后光纤不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。<br>
  5.选用精度高的光纤端面切割器来制备光纤端面 <br>
光纤端面的好坏直接影响到熔接损耗大小,切割的光纤应为平整的镜面,无毛刺,无缺损。光纤端面的轴线倾角应小于1度,高精度的光纤端面切割器不但提高光纤切割的成功率,也可以提高光纤端面的质量。这对OTDR测试不着的熔接点(即OTDR测试盲点)和光纤维护及抢修尤为重要。<br>
  6.熔接机的正确使用<br>
  熔接机的功能就是把两根光纤熔接到一起,所以正确使用熔接机也是降低光纤接续损耗的重要措施。根据光纤类型正确合理地设置熔接参数、预放电电流、时间及主放电电流、主放电时间等,并且在使用中和使用后及时去除熔接机中的灰尘,特别是夹具、各镜面和v型槽内的粉尘和光纤碎末的去除。每次使用前应使熔接机在熔接环境中放置至少十五分钟,特别是在放置与使用环境差别较大的地方(如冬天的室内与室外),根据当时的气压、温度、湿度等环境情况,重新设置熔接机的放电电压及放电位置,以及使v型槽驱动器复位等调整。 <br>
  三、光纤接续点损耗的测量<br>
  光损耗是度量一个光纤接头质量的重要指标,有几种测量方法可以确定光纤接头的光损耗,如使用光时域反射仪(OTDR)或熔接接头的损耗评估方案等。<br>
  1.熔接接头损耗评估<br>
  某些熔接机使用一种光纤成像和测量几何参数的断面排列系统。通过从两个垂直方向观察光纤,计算机处理并分析该图像来确定包层的偏移、纤芯的畸变、光纤外径的变化和其他关键参数,使用这些参数来评价接头的损耗。依赖于接头和它的损耗评估算法求得的接续损耗可能和真实的接续损耗有相当大的差异。<br>
  2.使用光时域反射仪(OTDR)<br>
  光时域反射仪(OTDR:Optical Time Domain Reflectometer)又称背向散射仪,其原理是:往光纤中传输光脉冲时,由于在光纤中散射的微量光,返回光源侧后,可以利用时基来观察反射的返回光程度。由于光纤的模场直径影响它的后向散射,因此在接头两边的光纤可能会产生不同的后向散射,从而遮蔽接头的真实损耗。如果从两个方向测量接头的损耗,并求出这两个结果的平均值,便可消除单向OTDR测量的人为因素误差。然而,多数情况是操作人员仅从一个方向测量接头损耗,其结果并不十分准确,事实上,由于具有失配模场直径的光纤引起的损耗可能比内在接头损耗自身大10倍。<br>
 楼主| HT-BEYOND 发表于 2006-6-16 12:53:38 | 显示全部楼层

re:光纤接续关键词: 光纤;接续...

光纤接续<br>
关键词: 光纤;接续 <br>1 端面的制备。光纤端面的制备包括剥覆、清洁和切割这几个环节。合格的光纤端面是熔接的必要条件,端面质量直接影响到熔接质量。<br>1.1 光纤涂面层的剥除 掌握平、稳、快三字剥纤法。“平”,即持纤要平。左手拇指和食指捏紧光纤,使之成水平状,所露长度以5cm为它,余纤在无名指、小拇指之间自然打弯,以增加力度,防止打滑。“稳”,即剥纤钳要握得稳。“快”,即剥纤要快,剥纤钳应与光纤垂直,上方向内倾斜一定角度,然后用钳口轻轻卡住光纤,右手随之用力,顺光纤轴向平推出去,整个过程要自然流畅,一气呵成。<br>
  1.2 裸纤的清洁 裸纤的清洁应按下面的两步操作。<br>1)观察光纤剥除部分的涂覆层是否全部剥除,若有残留应重剥。如有极少量不易剥除的涂覆层,可用棉球沾适量酒精,边浸渍,边逐步擦除。<br>成功,一块棉花使用2~3次后要及时更换,每次要使用棉花的不同部位和层面,这样既可提高棉花利用率,又防止了探纤的两次污染。<br>
  1.3 裸纤的切割 切割是光纤端面制备中最为关键的部分,精密、优良的切刀是基础,严格、科学的操作规范是保证。<br>
  1)切刀的选择 切刀有手动(如日本CT-07切刀)和电动(如爱立信FSU-925切刀)两种。前者操作简单,性能可靠,随操作者水平的提高,切割效率和质量可大幅度提高,且要求裸纤较短,但该切刀对环境温差要求较高。后者切割质量较高,适宜在野外寒冷条件下作业,但操作较复杂,工作速度恒定,要求裸纤较长。 熟练的操作者在常温下进行快速光缆接续或抢险,采用手动切刀为宜;反之,初学者或在野外较寒冷条件下作业时,直用电动切刀。<br>
  2)操作规范 操作人员应经过专门训练掌握动作要领和操作规范。首先要清洁切刀和调整切刀位置,切刀的摆放要平稳,切割时,动作要自然、平稳,勿重、勿急,避免断纤、斜角、毛刺、裂痕等不良端面的产生。另外,学会“弹钢琴”,合理分配和使用自己的右手手指,使之与切刀的具体部件相对应、协调,提高切割速度和质量。<br>
  3)谨防端面污染 热缩套管应在剥覆前穿入,严禁在端面制备后穿入。裸纤的清洁、切割和熔接的时间应紧密衔接,不可间隔过长,特别是已制备的端面切勿放在空气中。移动时要轻拿轻放,防止与其它物件擦碰。在接续中,应根据环境,对切刀“V”形槽、压板、刀刃进行清洁,谨防端面污染。<br>
  2光纤熔接。光纤熔接是接续工作的中心环节,因此高性能熔接机和熔接过程中科学操作十分必要。<br>
  2.1 熔接机的选择 应根据光缆工程要求配备蓄电池容量和精密度合适的熔接设备。依笔者经验,日本FSM-30S电弧熔接机性能优良、运行稳定、熔接质量高,且配有防尘防风罩、大容量蓄电池,适宜于各种大中型光缆工程。而西门子X-76熔接机体积较小、操作简单、备有简易切刀,蓄电池和主机会二为一,携带方便,精度比前者稍差,电池容量较小,适宜于中小型光缆工程。<br>
  2.2熔接程序 熔接前根据光纤的材料和类型,设置好最佳预熔主熔电流和时间及光纤送入量等关键参数。熔接过程中还应及时清洁熔接机“V”形槽、电极、物镜、熔接室等,随时观察熔接中有无气泡、过细、过粗、虚熔、分离等不良现象,注意OTDR跟踪监测结果,及时分析产生上述不良现象的原因,采取相应的改进措施。如多次出现虚熔现象,应检查熔接的两根光纤的材料、型号是否匹配,切刀和熔接机是否被灰尘污染,并检查电极氧化状况,若均无问题,则应适当提高熔接电流。<br>
  3盘纤。盘纤是一门技术,也是一门艺术。科学的盘纤方法,可使光纤布局合理、附加损耗小、经得住时间和恶劣环境的考验,可避免挤压造成的断纤现象。<br>
  3 3.1盘纤规则 <br>
  1)沿松套管或光缆分枝方向为单位进行盘纤,前者适用于所有的接续工程;后者仅适用于主干光缆末端,且为一进多出。分支多为小对数光缆。该规则是每熔接和热缩完一个或几个松套管内的光纤、或一个分技方向光缆内的光纤后,盘纤一次。优点:避免了光纤松套管间或不同分枝光缆间光纤的混乱,使之布局合理,易盘、易拆,更便于日后维护。<br>
  2)以预留盘中热缩管安放单元为单位盘纤,此规则是根据接续盒内预留盘中某一小卜徘?蚰谀芄话卜诺娜人豕苁?拷?信滔恕@?鏕LE型桶式接头盒,在实际操作中每6芯为一盘,极为方便。优点:避免了由于安放位置不同而造成的同一束光纤参差不齐、难以盘纤和固定,甚至出现急弯、小圈等现象。<br>
  3)特殊情况,如在接续中出现光分路器、上/下路尾纤、尾缆等特殊器件时,要先熔接、热缩、盘绕普通光纤,再依次处理上述情况,为安全常另盘操作,以防止挤压引起附加损耗的增加。<br>
  3.2 盘纤的方法<br>
  1)先中间后两边,即先将热缩后的套管逐个放置于固定槽中,然后再处理两侧余纤。优点:有利于保护光纤接点,避免盘纤可能造成的损害。在光纤预留盘空间小,光纤不易盘绕和固定时,常用此种方法。<br>
  2)以一端开始盘纤,即从一侧的光纤盘起,固定热缩管,然后再处理另一侧余纤。优点:可根据一侧余纤长度灵活选择效铜管安放位置,方便、快捷,可避免出现急弯、小圈现象。<br>
  3)特殊情况的处理,如个别光纤过长或过短时,可将其放在最后单独盘绕;带有特殊光器件时,可将其另盘处理,若与普通光纤共盘时,应将其轻置于普通光纤之上,两者之间加缓冲衬垫,以防挤压造成断纤,且特殊光器件尾纤不可太长。<br>
  4)根据实际情况,采用多种图形盘纤。按余纤的长度和预留盘空间大小,顺势自然盘绕,切勿生拉硬拽,应灵活地采用圆、椭圆、“CC”、“~”多种图形盘纤(注意R≥4cm),尽可能最大限度利用预留盘空间和有效降低因盘纤带来的附加损耗。<br>
  4光缆接续质量的确保 加强OTDR的监测,对确保光纤的熔接质量,减少因盘纤带来的附加损耗和封盒可能对光纤造成的损害,具有十分重要的意义。在整个接续工作中,必须严格执行OTDR 四道监测程序:<br>
  1)熔接过程中对每一芯光纤进行实时跟踪监测,检查每一个熔接点的质量;<br>
  2)每次盘纤后,对所盘光纤进行例检以确定盘纤带来的附加损耗;<br>
  3)封接续盒前,对所有光纤进行统测,以查明有无漏测和光纤预留盘间对光纤及接头有无挤压;<br>
  4)封盒后,对所有光纤进行最后检测,以检查封盒是否对光纤有损害。 5结论 光缆连续是一项细致的工作,特别在端面制备、熔接、盘纤等环节,要求操作者仔细观察,周密考虑,操作规范。总之,在工作中,要培养严谨细致的工作作风,勤于总结和思考,才能提高实践操作技能,降低接续损耗,全面提高光缆接续质量。<br>
<br>
 楼主| HT-BEYOND 发表于 2006-6-16 13:10:44 | 显示全部楼层

re:降低光纤接头熔接损耗的方法...

降低光纤接头熔接损耗的方法<br><br>
<br>
1光纤接头馆接损耗的概念<br>
<br>光纤熔接是用全自动的专用设备——熔接器(Fusion Splitter)将两段光缆中需要连接的光纤分别——连接起来,熔接时采用短暂电弧烧熔两根光纤端面使之连成一体,这种连接方法接头体积小、机械强度高、光纤接续后性能稳定,因而应用广泛。光纤接续后光线传输到接头处会产生一定的损耗量称之为熔接损耗或接续损耗。由于光纤接续质量影响光纤线路传输损耗的客限、光纤线路无中继放大传输距离等参数,因此要求光纤接头处的熔损耗尽可能小,以确保光纤CATV信号的传输质量。<br>
<br>目前,多数熔接法可以做到使熔接损耗子均小于0.1dB,甚至可以达到小于0.05 dB的水平,对具体的光纤CATV工程而言,可根据具体情况如光纤线路中继段长度、光设备发射功率与接收灵敏度及系统格量等确定每个光纤接头处允许的熔接损耗值,将其作为熔接损耗指标在有关技术文件中加以明确规定。光纤CATV传输线路上每个中继段的线路传输损耗也应有明确规定,因为光纤接头全部熔接完毕后衡量光纤线路传输质量的指标是光纤线路的传输损耗,目前要求这项指标在0.25dB/km以下(含熔接损耗)。由于光纤CATV的传输网络的发展方向是宽带数据业务网,因而对光纤接头的熔接损耗及光纤线路的传输损耗应有较高要求,特别是一些光纤CATV干线网,如全长1800km多连接全省13个省辖市呈双环型结构以传输广播电视节目为主要业务的江苏广播电视光缆传输省干线网,要求在1550nm窗口的光纤线路传输损耗不得超过0.23dB/km,光纤接头的熔接损耗值目前最大不得超过0.06dB。<br>
<br>2光纤接头熔接损耗的测量<br>
<br>测量光纤接头熔接损耗需用光时域反射仪(Optical Time Domain Reflectometer,OTDR),这种仪器采用后向散射法来测量光纤接头处的熔接损耗值。熔接机上虽也显示熔接损耗值,但因其是采用光纤芯轴直视法进行局部监视测得的,仅在非常理想的状态下才反映实际的熔接损耗,故一般仅供参考用。由于光纤的折射率、芯径、模场直径及瑞利散射系数的不同,所以从光纤接头两端分别测量熔接损耗得到的两个方向的熔接损耗测量值是不同的且相差较大,故GB/T15972-1995《光纤技术规范》附录A《光纤后向散射功率曲线分析》规定,熔接损耗的测量应分别从光纤接头的两端进行测量,亦即双向测量,取两个方向测量值代数和的平均值作为该接头处熔接损耗值;由于被接续的两根光纤散射性能的差异,OTDR测得光纤接头的熔接损耗值可能为正值也可能为负值,对熔接损耗为负值的光纤接头可认为熔接合格,一般不重新熔接;熔接时每个接头的熔接损耗的OTDR测量值一般应小于熔接损耗所要求的指标值的1/2-2/3,如指标要求小于0.1dB,则单向测量值一般应小于0.05-0.06dB。 测量熔接损耗的方法一般有远端监测法,即置于机房内的OTDR通过带连接器的尾纤与被测光缆相连,光纤接续点不断向前移动,而OTDR始终在机房内对接续点进行质量监视和熔接损耗测量,其优点是测量偏差小,缺点是只能单向测量,适用于模场直径一致性较好的光纤。近端监测法即OTDR始终在接续点前边距接续处一个光缆盘长,缺点是OTDR需不断向前移动,影响仪器的使用,优点是OTDR的测量范围不要求太大。<br>
<br>上述两种方法测得的熔接损耗值均是单向测量值,在光纤接头全部熔接完毕后再从光纤线路的另一端依次测量各个光纤接头的熔接损耗值,然后将每个接头的两个方向的测量值相加取平均值作为该接头的熔接损耗。远端环回双向监测法即是将光线内的光纤临时作环接构成回路,从而可对光纤接头进行双向测量,避免了单向测量不能及时获得熔接损耗值的点,这种测量方法要求OTDR的仪器测量距离范围要大,但因测量方法过于复杂因而只适用于12芯以下的光缆。对光纤CATV工程而言一般可采用远端监测法,前提是接续处两根光纤的模场直径必须一致。下面以江苏广播电视光缆传输省干线网所用的8芯层绞式永鼎光缆为例简介远端环回双向监测法。光缆内有红绿白白4根PBT束管,每根束管内有蓝、白纤各一根,每盘光缆的盘长均为2km, OTDR置于机房内测量,在第一和第二接线包处各有一组熔接施工人员并分别称为第1组和第2组,先由第2组在第二接线包处将第二盘缆红管中的蓝纤和白纤临时熔接起来,然后第1组将第一、二盘缆红管中的蓝纤和白纤分别熔接起来,此时机房内的OTDR与第一盘缆的白纤相接时在2 km处测得第1接线包中红管内白纤的接头从A端到B端方向的熔接损耗值a11,在6km处测得蓝纤的接头B到A向的熔接损耗值612,OTDR与蓝纤相连在2km处测得蓝纤的接头从A到B方向的熔接损耗值a12,在6km处测得白纤的接头从B到A方向的熔接损耗值b11,则白纤的接头的熔接损耗值为 S白=(a11+b11)/2,蓝纤的接头熔接损耗值S蓝=(a12+b12)/2,符合要求则按上述方法熔接绿管中的蓝白两根光纤直到4根束管中的纤全部熔接完毕,封好接线包后第1组移到第3接线包处进行临时熔接,熔接方法与第2组在第二接线包处的熔接方法相同,第2组则正式熔接第2接线包中的光纤,熔接完毕后移到第4接线包处临时熔接,第2组再正式熔接第3接线包,依此类推,直到光纤接头全部熔接完毕,这种方法避免了光纤接续错乱,及时按双向测量要求测出光纤接头熔接损耗并判断损耗值是否超标,避免了单向测量不能及时测得熔接损耗而导致日后返工耗值超标的接头。<br>
<br>3影响光纤接头熔接损耗的主要因素<br>
<br>光纤熔接损耗的影响因素可分为本征因素和非本征因素。本征因素是指光纤自身的一些因素,诸如两根光纤的模场直径不一致,光纤芯径失配,纤芯截面不圆,纤芯与包层同心度不佳等,其中模场直径不一致对光纤接头熔接损耗的影响较大,国际电报电话咨询委员会(CCITT)的G652标准规定1310nm窗口的模场直径标称值在9-10pm内,偏差不得超过标称值的10%,在此容差范围内一根模场直径为11pm的光纤与另一根模场直径为9pm的光纤在非常良好的接续条件下熔接后,接头处熔接损耗的理论计算值可达到0.17dB,在实际接续中则更高。非本征因素则是指各种人为因素及仪器设备等因素对熔接损耗的影响,如:熔接时光纤未对准,使两根光纤纤芯的轴线径向偏移达2Pm时熔接损耗的理论值可达到0.74dB;两根光纤轴向倾斜在倾斜角达1度时熔接损耗的理论值可达到O.46 dB;光纤端面切割倾斜角之和达1度时光纤熔接的理论值达0.21dB;接续者的操作水平也影响熔接损耗,有资料介绍同样的仪器设备由不同的人操作,10个熔接点的总损耗差值最高可达0.32dB;此外,接线包中光纤的盘绕、预留光缆的盘绕、熔接机的熔接参数设置和放电电极的清洁状况,以及接续工作环境是否洁净等对光纤熔接损耗均有不同程度的影响。<br>
<br>4降低光纤接头熔接损耗的方法<br>
<br>影响光纤接头熔接损耗的因素较多,只有消除各种不良因素的影响才能从根本上降低光纤接头的熔接损耗,从而减小光纤CATV线路传输损耗。根据笔者实践及有关资料介绍,建议可采取如下措施来降低光纤接头的熔接损耗。<br>
<br>(1)光纤在某点断开后断开处的模场直径是相同的,因而在断开处熔接可使光纤模场直径对熔接损耗的影响最小,所以必须要求光缆生产厂家选用同一生产批次的优质名牌裸光纤按订货长度连续生产,根据规定的盘长将光缆依此断开绕盘,对绕好的缆盘连续编号并分清A,B端(断开处在前一盘上若为B端则在紧连的后一揽盘上就为A端),不得跳号或错乱,敷设时按确定的路由根据统盘的编号顺序依次布放且前一盘缆的B端要和后一盘绕的A端相连,从而保证能在断开处熔接光纤,避免了因光纤模场直径不一致而导致光纤接头熔接损耗偏大的缺点。<br>
<br>(2)敷设光缆时必须采用牵引速度木大于20m/min的无级调速的机械牵引法,牵引力不得超过光缆允许张力的80%,瞬间最大牵引力不超过100%,牵引力必须施加在光缆中的加强件上,架设后光缆受到最大负载时产生的伸长率应小于0.2%,为避免牵引过程中光纤受力和扭曲,在必要时需制作光缆牵引端头,施工中光缆的弯曲半径应大于光缆直径的20倍,光缆必须从统盘上方放出并保持松驰弧形且无扭转、严禁打小圈弯折扭曲等,从而尽可能地降低光缆中光纤受损伤的几率,避免因光缆端部的光纤受损伤而使接头熔接损耗增大。<br>
<br>(3)应有训练有素的接续施工人员来完成光纤的接续工作,要严格接续工艺流程边熔接边测量光纤接头熔接损耗,熔接损耗不合要求的接头必须从新熔接,反复熔接的次数以3-4次为宜,连续熔接3次后仍改善不大时,在排除熔接机原因后一般只要达到3次熔接中的最低值即可,不要反复熔接以免过多消耗光纤给盘纤带来不良影响。盘绕在接线包储纤盘上的光纤余长应不小于60cm,盘绕的圆圈半径要尽可能大,接续时若同一根光纤上前一个接头的熔接损耗为负值,则紧接着的后边一个接头的熔接损耗值可大些,若前边接头的熔接损耗值较大,则紧接着的后边一个接头的熔接损耗值须较小或为负值,为避免光缆端部的光纤受损而影响熔接损耗,在做光缆熔接准备工作时可把光缆头部多截去一些。<br>
<br>(4)接续光纤须在整洁的环境中进行,如在工程车或小型帐篷内,在多尘及潮湿的环境中不宜进行熔接。光纤接续部位及接续工具必须保持清洁干燥,制备光纤断面时必须先擦拭后切割,制备好的光纤断面必须清洁不得有污物,且木宜长时间暴露在空气中更不能让其受潮。光纤的断面切割要整齐,且两个断面相互间倾斜角要小于0.3度。将光纤放置到熔接机的V型槽中时动作要轻巧,这是因为对纤芯直径10 Pm的单模光纤而言,若要熔接损耗小于.1dB,则光纤轴线的径向偏移要小于0.8 Pm。<br>
<br>(5)光缆进人接线包的两端必须固定牢靠,以免挂放接线包时因光缆扭转而使光纤接头位置错动,导致接头处损耗测量值偏大。在熔接施工中常发现熔接时,在1550nm窗口下测得的熔接损耗值符合要求,但封好接线包后复测接头处损耗的值却偏大,这通常是由光纤接头位置错动引起的,此时可改在1310nm窗口复测,若测量值偏小则是光纤接头位置错动,须重新盘绕光纤余长,若偏大则是熔接问题,须重新熔接,为避免这种现象,须用不干胶带将光纤接头和光纤余长牢固地固定在储纤盘板上。接线包两侧的光缆余长的盘绕直径直控制在40cm左右,不宜太小,以免统中光纤因过分扭曲而受损。<br>
<br>(6)熔接机及切割刀具等对光纤熔接损耗也有较大影响,熔接时要根据光纤类型正确合理地设置熔接参数,诸如预熔电流、预熔时间及主熔电流、主熔时间等。熔接时应及时除去熔接机V型槽内以及切割刀具中的光纤碎末和粉尘。熔接机使用完毕后须除去机器外壳上的灰尘,若在潮湿环境中使用还须对其做防潮处理。熔接机电极的使用寿命一般约2000次,要求每放电熔接20次后须运行清洗程序来清洗电极,但在光纤清洁和接续条件良好的情况下可熔接60次左右后放电清洗一次,工作条件较差时可熔接30-40次后放电清洗一次,这样既延长了电极的使用寿命又不致加大熔接损耗。使用时间较长的熔接机电极上面会有一层灰垢导致放电电流偏大而使熔接损耗值增大,此时可拆下电极,用酒精棉轻轻擦试后再装到熔接机上并放电清洗一次,若多次清洗后放电电流仍偏大,则须重新更换电极;此外,就是要挑选防尘能力强适合在野外作业的熔接机来熔接光纤。<br>
<br>5结束语 <br>
<br>降低光纤接头熔接损耗可有效地减小光纤CATV的光缆线路传输损耗,从而提高其传输质量,因而有着重要的实际意义。只要针对影响光纤接头熔接损耗的各种不良因素综合采取文中所述各种措施就能最大程度地降低熔接损耗,从而使光纤CATV具有高质量的光缆传输线路,为有线电视台今后开展数据业务和实现光纤到家提供良好基础。<br>
<br>
neiadai 发表于 2006-6-16 16:36:45 | 显示全部楼层

re:看则受益!呵呵

看则受益!呵呵
再回首 发表于 2006-6-17 10:45:09 | 显示全部楼层

re:受益非浅支持呀

受益非浅<br>
支持呀
LYZ 发表于 2006-7-3 13:27:57 | 显示全部楼层

re:好东西!ding !

好东西!ding !<br>
huang 发表于 2006-7-26 22:47:15 | 显示全部楼层

re:真是好东西!!

真是好东西!!
nhpyx 发表于 2006-8-17 23:12:30 | 显示全部楼层

re:我熔纤3年,原来有这般理论.受益非浅....

我熔纤3年,原来有这般理论.受益非浅.<br><br>
随缘 发表于 2006-8-23 15:47:51 | 显示全部楼层

re:理论方面不错,我有多年的实践过程,秘诀在...

理论方面不错,我有多年的实践过程,秘诀在于:心静、气安,决不能求快。关键步骤是切割度。<img src="leadbbsfile/UBBicon/em13.GIF" width=20 height=20 align=absmiddle border=0>
zuoda 发表于 2006-9-1 15:08:25 | 显示全部楼层

re:trrtrtrtrtrfff fdfff

trrtrtrtrtrfff fdfff
joinnow 发表于 2006-8-30 15:00:07 | 显示全部楼层

re:不错 熔接主要是胆大 心细

不错 熔接主要是胆大 心细
ttl790211 发表于 2006-9-13 09:02:21 | 显示全部楼层

re:好啊顶啊

好啊<br>
顶啊
shuidaolu 发表于 2006-9-14 10:08:54 | 显示全部楼层

re:不错很好啊

不错很好啊
沟女李寻欢 发表于 2006-9-27 22:17:06 | 显示全部楼层

re:理论方面不错!!!!!!!!!!!!!

理论方面不错!!!!!!!!!!!!!
成长的砾石 发表于 2006-10-4 19:47:17 | 显示全部楼层

re:不错,学习

不错,学习
gaolb 发表于 2006-10-11 09:45:01 | 显示全部楼层

re:好,好文

好,好文
kelvin1979 发表于 2006-11-1 20:43:42 | 显示全部楼层

re:物超所值

物超所值
学D野 发表于 2006-11-1 16:35:37 | 显示全部楼层

re:学到东西!谢谢![em01]

学到东西!谢谢!<img src="leadbbsfile/UBBicon/em01.GIF" width=20 height=20 align=absmiddle border=0>
bsctv 发表于 2006-11-3 12:18:06 | 显示全部楼层

re:花费1积分

花费1积分
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|中广网讯(北京)信息技术有限公司 京ICP备16012447号-10

GMT+8, 2024-5-3 21:24 , Processed in 0.071805 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表